Intrinsic Ergodicity for Certain Nonhyperbolic Robustly Transitive Systems
نویسندگان
چکیده
We show that a class of robustly transitive diffeomorphisms originally described by Mañé are intrinsically ergodic. More precisely, we obtain an open set of diffeomorphisms which fail to be uniformly hyperbolic and structurally stable, but nevertheless have constant entropy and isomorphic unique measures of maximal entropy.
منابع مشابه
Entropic Stability beyond Partial Hyperbolicity
We analyze a class of deformations of Anosov diffeomorphisms: these C-small, but C-macroscopic deformations break the topological conjugacy class but leave the high entropy dynamics unchanged. More precisely, there is a partial conjugacy between the deformation and the original Anosov system that identifies all invariant probability measures with entropy close to the maximum. We also establish ...
متن کاملContribution to the Ergodic Theory of Robustly Transitive Maps
In this article we intend to contribute in the understanding of the ergodic properties of the set RT of robustly transitive local diffeomorphisms on a compact manifold M without boundary. We prove that there exists a C residual subset R0 ⊂ RT such that any f ∈ R0 has a residual subset of M with dense pre-orbits. Moreover, C generically in the space of robustly transitive local diffeomorphisms w...
متن کاملA Pasting Lemma I: the case of vector fields
We prove a perturbation (pasting) lemma for conservative (and symplectic) systems. This allows us to prove that C volume preserving vector fields are C-dense in C volume preserving vector fields. Moreover, we obtain that C robustly transitive conservative flows in threedimensional manifolds are Anosov and we conclude that there are no geometrical Lorenz-like sets for conservative flows. Also, b...
متن کاملNonhyperbolic Step Skew-products: Entropy Spectrum of Lyapunov Exponents
We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. We derive a multifractal analysis for the topological entropy of the level sets...
متن کاملOn C-robust transitivity of volume-preserving flows
We prove that a divergence-free and C1-robustly transitive vector field has no singularities. Moreover, if the vector field is C4 then the linear Poincaré flow associated to it admits a dominated splitting over M . MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Volume-preserving flows; Robust transitivity; Dominated splitting; Ergodicity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009